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Abstract - Varying hydrothermal condi�ons i.e. changes in water poten�al and temperature affect maize seed 

germina�on and seedling growth. Major effects of climate change are increase in daily temperatures and decrease in 

rainfall which in turn result in low available soil moisture. From experiments carried out (three maize cul�vars seed 

germina�on test at five water poten�als and five temperatures, three maize cul�vars seed hydro-priming at three 

priming periods i.e. 12h, 18h and 24h, and lastly seedling growth experiment with three maize cul�vars at the same 
0temperature of 25 C with five water poten�als.   Experiments for the three objec�ves were conducted at University 

of Pretoria at the main Campus in Ha�ield South Africa. The main objec�ve of the study was to determine differences 

among maize cul�vars in germina�on and seedling growth under varying hydro-thermal condi�ons in South Africa. 
oAt low temperature of 15 C, seed germina�on was below 60% for the three cul�vars. This is supported by previous 

oresearches that established that base temperature for maize seed germina�on is +/- 10 C. Op�mum temperature 
o

and op�mum water poten�al whereby majority of the maize seed germinated were 20-30 C and -0.1 to 0 MPa for all 

the three maize cul�vars whereby 97.5% germina�on was realised. Op�mum hydro-priming period was realized to 

be 18h for it was a�er these hours that all the three cul�vars had highest germina�on percentage, T and 50 

germina�on index. The third experiment was on maize seed cul�vars emergence and seedling growth. The 

experiment was a complete random block design replicated three �mes. Op�mum seedling emergence, seedling 

growth and stomata conductance was observed on seeds hydro-primed for 18h and having available moisture of 50-

55%. Factors like cul�var, available soil moisture and hydro-priming period had significant effect on final emergence 

period, seedling growth and stomata conductance. PAN4A-111 had the highest results in terms of final emergence 

percentage, growth traits and stomata conductance. Since the whole study was looking at the effect of hydrothermal 

condi�ons on germina�on and seedling growth of maize, it is best for farmers to choose PAN4A-111. In conclusion 

based on the three experiments in this study, used to test the hypotheses that varying hydrothermal condi�ons i.e. 

temperature and water poten�al have significant effect on maize seed germina�on and seedling growth the 
oexperiment results proved this to be correct. Low temperature and supra-op�mal temperature (above 30 C) result in 

reduced final germina�on percentage. Low water poten�al from -0.4MPa at all temperatures result in low daily 

germina�on percentage, increased T , low final germina�on percentage and reduced germina�on rate index. 50

Farmers have to plant when their water poten�al is near neutral i.e. -0.1 to 0 MPa. The study was handy in 

Index Terms- Hydrothermal, water potential, optimum temperature, germination index, hydro-priming period, 
supra optimal temperature, optimum water potential 
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Maize is a major cereal crop in the world that is on 
number three in ranking after wheat and rice in terms of 
production.  Maize (Zea mays L.) is an important 
multipurpose cereal crop used as food, feed, fodder, 
fuel and in the manufacture of industrial products. 
Maize is widely adapted to variable agro-ecological 
conditions all over the world (Dlamini 2015). (Hu, Fan, 
et al. 2015) indicate that the sequencing of germination 
is clearly linked to temperature and water potential 
thresholds for radicle emergence, which vary among 
individual seeds in a population.  For Hydrothermal 
time (HTT) models can estimate how any specific 
fraction of a seed population will respond to changes in 
environmental conditions (Bradford 2002, Horn, 
Nettles, et al. 2015) , these models can also be applied to 
analyse a reduction in germination of the rare prairie 
annual Cryptantha minima (Yang, Li, et al. 2014). 
Knowledge of what causes PANNAR maize cultivars 
to germinate differently in the same environmental 
conditions is not readily available. Little information is 
available as to why one cultivar performed better 
compared to the other two cultivars in terms of absolute 
total germination percentage and seedling growth 
under the same abiotic factors e.g. temperature and 
water potential. 

The main objective of the study was to determine 
performance of maize cultivars by applying 
hydrothermal time (HTT) model to establish the 
germination characteristics and their response to 
changes in water availability and temperature 
conditions. The specific objectives were to: (1) 
construct a hydrothermal time model for 3 PANNAR 
maize seeds and establish important germination 
thresholds and parameters; (2) examine whether 
fluctuating temperatures and water potentials stimulate 
PANNAR maize seeds germination and (3) based on 
the parameters obtained from the HTT model, discuss 
the effects of climate change, specifically of increasing 
temperature and water potential on the PANNAR maize 
seed germination.

(Dumont, Andueza, et al. 2015) the response to 
temperature depends on a number of factors, including 
the species, variety, growing region, quality of the seed, 
and duration from harvest. As a general rule, temperate-
regions seeds require lower temperatures than do 
tropical region seeds, and wild species have lower 
temperature requirements than domesticated plants. 
High-quality seeds are able to germinate under wider 
temperature ranges than low-quality seeds.

Temperature is known to be one of the major 
environmental factors that control maize seed 
germination directly. This is because of the role it plays in 
breaking seed dormancy and climatic conditions 
alterations. Temperature regulates both germination 
percentage and germination rate (Li, Khan, et al. 2015). 
Most importantly, there are three ways temperature 
controls germination. These are: regulating the capacity 
and the rate of germination, removal of primary and 
secondary dormancy and lastly it induces secondary 
dormancy (Hawkins 2014).  Above the ideal level, where 
germination rate is more rapid, a decline occurs as the 
temperature gets to lethal limit as seed is injured. 
Germination percentage, unlike germination rate, may 
remain relatively constant, at least over the middle part of 
temperature range if enough time is allowed for 
germination to take place (Nuugulu 2013). Maize seed 
germination which is a combination of several individual 
reactions and phases is affected by temperature. Effect of 
temperature on germination can be put as cardinal 
temperature: that is minimum, optimum and maximum 
temperatures at which germination takes place. 
Minimum temperature is problematic to state as 
germination may actually be proceeding at such a low 
rate that determination of germination is often made 
before actual germination is completed. Optimum 
temperature is the temperature giving the greatest 
percentage of germination in the shortest time frame. 
Maximum temperature is one at which no germination is 
recorded and is characterized by denaturing of proteins 
essential for germination. Most researchers concur that 
optimum temperature for germination of most seeds is 
between 15 and 30◦C (Shaban 2013). Each germination 
and seedling growth stage has got its own cardinal 
temperature and this lead to temperature changes 
throughout the germination period because of the 
complexity of the germination process. The rate of plant 
development for any maize hybrid is directly related to 
temperature, so the length of time between the different 
stages will vary as the temperature varies, both between 
and within growing seasons.
Temperature is key factor determining germination in the 
arid and semiarid areas (Florentine, Weller, et al. 2016). 
(Bewley, Bradford, et al. 2013) pointed that maximal 
germination can occur over a range of temperatures and 
germination decreases sharply on either side of the range. 
Germination rate usually increases linearly with 
increasing temperature from minimal to an optimum and 
decreases linearly to a ceiling temperature (Andrade and 
Cardoso 2016). Germination rate rises linearly with 
temperature at the sub-optimal temperature range 
(temperature between Tb and To), which is a result of 

Introduction

1.1.1. Effect of temperature on maize seed 
germination and seedling growth
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thermal dynamics. Suggested causes of fall in GR at supra-
optimal temperature range (To and Tc) are thermal 
denaturation of proteins, membrane dysfunction and 
interactions with water  (Lukeš, Procházková, et al. 2014).

germination than temperature, especially at low ψ. 
When ψ is lower than -0.5 MPa, physiological 
adjustment occurs. Final germination percentage 
remains constant after approaching a lower level at 
reduced ψ, rather than gradually increasing over 
time as it does at low temperature (Edwards, 
Burghardt, et al. 2016). The minimal water 
potential for seed germination, base water 
potential moves with seed physiological status, , 

dormancy and imbibition environmental 
conditions (Moral, Lozano-Baena, et al. 2015). 
Sensitivity of seeds to water availability can 
change during germination. Seeds are capable of 
germinating at high levels of water stress and at 
optimum temperatures. Water requirements for 
seed germination i.e. ψ , increase with increasing b

temperature at supra-optimal temperature range in 
potato seed, carrot seed and onion seed (Soltani, 
Soltani, et al. 2013). Relationship between GR and 
temperature can be modified by water availability.

1.1.2.Effect of water potential on maize seed 
germination and seedling growth

Many factors determine flow of water from the soil 
into the seed and of these, water relationship between 
seed and soil is the major one. Water potential (ψ) is 
an expression of the water energy status where the net 
diffusion of water occurs down an energy gradient 
from high to low water potential. In the seed, three 
factors determine the water potential and these are: 
osmotic potential (ψ ), pressure potential (ψ ) and π p

matrix potential (ψ ) (Nuugulu 2013). The total (ψ + c π 

ψ +ψ ) of the three terms determines water potential. p c

Basically ψ  is determined by the concentration of π

dissolved solutes in water or the cell, ψ particles or c 

cell wall, starch and bodies and their ability to absorb 
water and ψ , by internal pressure built up in a cell p

which exerts a force on the cell wall. The three terms 
(osmotic potential, pressure potential and matrix 
potential) normally result in negative form except in a 
situation where it approaches zero –(Leitner, 
Meunier, et al. 2014). 
Difference in water potential between seed and soil is 
one of the major factors determining availability and 
the rate of water flow into the seed (Lobet, Couvreur, 
et al. 2014). At the beginning the difference in water 
potential between the dry seed and moist germination 
medium is rather large because of higher matrix. 
(Zaritzky 2015) stated that as seed moisture content 
increases during imbibitions and the tissue becomes 
hydrated, the water potential of the seed increases 
(becoming less negative). It is crucial to note that the 
movement of water into the seed is largely influenced 
by the properties of the seed and by the environment 
in which the seed is situated. Water potential gradient 
between the seeds and its surroundings is a driving 
force for water uptake, but the permeability of the 
seed to water is more important in determining its rate 
of uptake (Martínez-Ballesta, Zapata, et al. 2016). 
Seed permeability is influenced by morphology, 
structure, composition, initial moisture content and 
temperature at imbibition. The rate of water uptake is 
not necessarily influenced by one of the above 
mentioned events, but their complex interaction 
(Obidiegwu, Bryan, et al. 2015). Water is critical for 
seed germination and seedling growth. Mostly, GR 
increases linearly with water availability and 
germination percentage is reduced at reduced water 
potential (ψ). Water has more complicated effects on 

1.1.3. Physiology of seedling development

Abiotic stress such as drought and extreme 
temperatures are serious threats to crop production 
and food security in general. Temperature and 
water deficit stress are said to be the primary cause 
of crop failure throughout the globe (Shafique, 
Rehman, et al. 2014). Drought and temperature 
s tress  are known to be responsible for 
physiological, morphological, biochemical and 
molecular changes that affect seedling growth 
(Hasanuzzaman, Nahar, et al. 2013). Maize 
cultivars develop different mechanisms to cope 
with drought and extreme temperature stress. The 
plants close their stomata when they experience 
water shortage to prevent further loss of moisture 
through transpiration (Moshelion, Halperin, et al. 
2015).

1.1.4. Germination and Emergence (VE)

Under desirable field conditions, the planted seed 
absorbs water and begins growth. The radicle is 
first to begin elongation from the swollen kernel, 
followed by the coleoptile with the enclosed 
plumule (embryonic plant), and then the three to 
four lateral seminal roots (Gianinetti 2016). VE 
(emergence) is finally attained by rapid mesocotyl 
elongation which pushes the growing coleoptile to 
the soil surface. Under warm, moist conditions, 
plant emergence will occur within 4 to 5 days after 
planting, but under cool or dry conditions, 2 weeks 
or longer may be required–(Wright, Schnitzer, et 
al. 2015).
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For plants to adapt to warm or low moisture 
environment they require the ability to live under 
moderate to extreme drought and heat stress 
(Horton, Mankin, et al. 2016). The strategy to 
achieve this may involve either water and heat 
stress avoidance or tolerance. The gene expression 
in tolerant plants may cause alteration of nucleic 
acid structures (point mutation) and/or proline 
metabolism or both (Filippou, Antoniou, et al. 
2016, Hirayama and Shinozaki 2010). Changes in 
proline (free amino acid) content in plants under 
stress have often been used as a marker for one or 
other activated tolerance mechanism (Minocha, 
Majumdar, et al. 2014). The clear grasping of 
changes in protein profiles during abiotic stress 
may improve our understanding of drought 
tolerance and maize crop responsiveness to stress  
(Ng, De Clercq, et al. 2014). The effect of drought 
stress on protein content or profile is reported in 
soybean (Ng, De Clercq, et al. 2014).It is further 
stated a strong correlation exists between the 
synthesis of so called heat shock proteins (HSPs) 
and thermo tolerance (Lin, Chai, et al. 2014).It has 
been widely assumed that the purpose of the heat 
shocks response (HSR) is to protect organisms 
from the detrimental effects of heat and/or drought 
stress (Carnemolla, Labbadia, et al. 2014). A 
common exhibition of heat shock proteins (HSRs) 
was reported in amaranth, maize and potato plants 
under stress (Huerta-Ocampo, Barrera-Pacheco, et 
al. 2014).

1.1.5. Drought Stress

Germination rate, the time until a certain fraction of seeds 
has germinated, can be calculated by specifying g and the 
HTT parameters. The mean minimum moisture Ψmin50  

seem to vary more or less strongly with temperature in 
many species (Ooi, Denham, et al. 2014) and has also 
been shown to vary among seed lots  (Ooi, Denham, et al. 
2014).  The four parameters Ψ Ψ , T  and σ(Ψ ) are HT, min50 min min

mostly determined by repeated probit regression or by 
non-linear regressions of data from germination 
experiments at factorial combinations of several levels of 
constant soil moisture and temperature (Abedi 2013). The 
hydrothermal time model proposes that seed germination 
rates are proportional to the amount by which 
temperature (T) and water potential exceed base or 
threshold values for those environmental factors  (Barth, 
Meyer, et al. 2015). Role of temperature is to determine 
the rate of progress toward completion of germination 
once a non-dormant seed is stimulated to germinate. The 
germination rate for a given seed fraction (GRg) is often a 
linear function of temperature between base temperature 
(T ) i.e. lowest temperature below which no germination b

is recorded and optimum temperature (T ) temperature at o

which rapid and majority of seeds in the seed population 
germinate  (Hay, Mead, et al. 2014). Hydrothermal time 
model is a result of the combination of thermal time and 
hydro time that describe seed germination patterns.

With Ψ >Ψ  and T  - T .soil min soil min

2014). Seeds are believed to germinate when they have 
been put to efficient moisture and temperature i.e. when 
hydrothermal conditions have stayed for the required 
hydrothermal time ψ Hydrothermal time is found by HT. 

adding the product of differences of daily moisture (Ψ , soil

measured as soil water potential), and temperature (T ) soil

to their respective base or minimum values (Ψ T ):min, min
. Ψ  =∑[( Ψ  - Ψ  )  (T  - T )]……......…………..Eq. HT soil min soil min

1

Hydrothermal time and minimum temperature are 
assumed constant for a species, whereas minimum 
moisture is assumed normally distributed within a 
population of seeds (Atashi, Bakhshandeh, et al. 2015) 
with a mean Ψ  and its standard deviation σ(Ψ ). min50 min

This study aimed at identifying the best cultivar to be 
grown by farmers under varying hydrothermal conditions 
reducing risks of climate change in South Africa. In 
determining the effects on germination and seedling 
growth, the results of the study hope to assist smallholder 
farmers choose the most suitable cultivar for their area.  
The specific objective of this chapter was to establish the 
differences in maize cultivar in terms of response to 
drought and heat stress at germination

1.1.6 Hydrothermal Model

The effects of variations in moisture levels (water 
potential) and temperatures can be described by use of 
hydrothermal time models (Mesgaran, Mashhadi, et al. 
2013). These models characterize seed germination rates 
and/or seedling growth by linking them to the amounts 
by which temperature (T) and water potential (ψ) are 
above base or threshold values for the particular plant 
species/cultivar (Han 2015). The timing of germination 
is critical, as the likelihood of seedling is dependent upon 
the subsequent availability of adequate water, 
temperature, light and nutrients to support plant growth. 
From the hydrothermal model, an individual plant begin 
to germinate or flower when the total of differences 
between mean daily temperature and a minimum 
temperature T , accumulated over many days, passes min

through ψ  (measured in degree-days) i.e.∑(T-T ) >ψ  T min T
.or (T-T ) t >ψ  for constant T. The HTT model increases min T

the temperature sum with the accumulation of soil 
moisture potential per degree day (Werle, Sandell, et al. 
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-0.6MPa
And 5 temperatures of:

0 15 C
020 C

Parameters of the hydrothermal time model were 
established from the relationships between 
germination rate (GR) and temperature at various 
water potentials (ψ) and between GR and ψ at various 
temperatures. Model assumptions were tested using 
these parameters. This investigation was performed 
as a factorial experiment under randomized complete 
block design (RCBD) with three replicates. Water 
gradients were established using polyethylene glycol 
(PEG-6000, EMC, Germany) solutions  (Zhang, 
Wang,  e t  a l .  2015) .Germinat ion  ra tes  of 
subpopulations were estimated from germination 
time courses over five water potentials of:

 -0.05MPa
-0.1MPa
-0.2MPa
-0.4MPa

0 35 C 

A randomized complete block design (RCBD) with 
two runs was used and the second run was started 21 
days after the first run. Seeds , 40/unit , were placed in 
9 cm Petri dishes with distilled water or PEG 
solutions on top of two layers of filter papers 
(Whitman No. 10) and Petri dishes were randomized 
within incubator shelves. Five mL of PEG solution 
were added initially to each Petri dish and an extra 2 
mL were added after 24 h and periodically as 
required. Clear plastic bags were used to seal Petri 
dishes to reduce water evaporation. The maize seeds 
were considered germinated when either the 
emerging radicle or cotyledon was =2 mm. 
Germination was recorded daily for up to 10 days 

The water potentials of PEG solutions were 
measured using a vapor pressure osmometer (Model 
5100, WescorInc. Logan, UT). The measurements 
were collected 30 min after PEG solutions penetrated 
into two layers of filter papers (Whitman No. 1) in 
Petri dish as suggested by (Zhang, Xie, et al. 2016) to 
take effect of filter paper on water potential into 
consideration. Value of water potential was adjusted 
to suit each germination temperature for modeling. 
Germination tests were conducted in darkness using 
five incubators. Designated temperatures 15, 20, 25, 

o30 and 35 C, were randomly allocated to each 
incubator.

030 C

025 C

1.2. Materials and Methods

1.2.1. Parameter estimation for 
the hydrothermal time model

in 2 consecutive days in all Petri dishes. Germinated 
seeds and rotten seeds were removed after each 
counting. Germination percentages were averaged 
over the three replicates before continuing with 
analysis. The percentage of viable seeds was 
estimated at the end of the germination test and 
adjusted to a scale of 0-100% by dividing final 
germination percentage with a scaling factor 
(Burghardt 2015).

0 15 C 

-0.1Mpa 
-0.2Mpa 

These represented decreasing levels of water 
availability for seed germination and constant 
temperatures used were:

The experiment included a full factorial design of 
treatments derived from three factors: 3cultivars, 5 
water potentials and 5 temperatures. Water 
potential levels were:
 -0.05Mpa

-0.4Mpa
 -0.6Mpa 

030 C 

 The range of temperatures included the 
temperatures the maize seeds experience in the 
field during germination period. Each treatment 
had three replicates. To determine the optimum 
germination temperature (i.e. the temperature 
where germination rate is at its maximum) a plot of 
germination rate versus temperature was drawn. 

thLeast squares regression lines were fitted to the 10  
thand 20  percentiles above and below the visually 

estimated optimum temperature (T ), which was o
0between 20 and 30 C. Optimum temperature per 

percentile was estimated as the point where 
regression lines above and below the visually 
estimated T  crossed each other. The germination o

modeling was based on the HTT models (Barth, 
Meyer, et al. 2015) which assume that the base 
temperature (T ) and the hydrothermal time b

required for germination (Ө ) are constants, while HT

the base water potential (ψ ) varies according to a b

normal distribution and is characterized by its mean 
(ψ ) and standard deviation (ψ ) (Rong, Li, et al. b(50) b

2015). The models also assume that below the 
optimum temperature (T ), ψ  is independent of o b

020 C

0 35 C 

025 C
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 According to the assumptions of the hydrothermal 
time model, germination progress can be described 
by the normal distribution of ψ  within a seed b (g)

population in Eq 1.3.(Wang, Bai, et al. 2005). The 
50% subpopulation (Ө ) was used in the HT (50)

hydrothermal time model for simplification even 
though variation existed among subpopulations. 
The predictability of the hydrothermal time model 
based on different assumptions was tested 1): T and b 

Ө  were assumed to be constant within a seed HT

population(Atashi, Bakhshandeh, et al. 2015). Base 
temperature of the 50% subpopulation (T  at) b (50)

MPa was used as the common T for the seed b 

population.Daily germination rate was measured 
and filter papers were replaced when needed. Seeds 
were considered germinated when the emergent 
radical reached 2mm length. After 10 days 
germination index and seedling vigour index was 
measured by Internat ional  Seed Test ing 
Association(Vashisth and Joshi 2016).

that prevents germination of percentage g.

Hydrothermal time, �HT, is:

    HT = (T - T ) (    -   ) tg…………………… 1.3b b(g)

1.2.2. Germination modeling

temperature, and that the T is independent of water b 

potential(Al-Mulla, Huggins, et al. 2014). Above T , o

where it is assumed that the hydrothermal time 
accumulation is maximal, ψ  increase with b

increasing temperature with a slope equal to k  T    

(Barth, Meyer, et al. 2015). The modeling was 
performed using repeated probit analyses (Hay, 
Mead, et al. 2014) where the response variable, 
percentage of germination, was transformed to the 
probit scale using the PROBIT function in SAS 
(Rong, Li, et al. 2015). Values below 10% and above 
90% of the final germination, considered data points 
that did not add any germination, as well as any 
observation were no increase in germination 
percentage occurred, were therefore excluded. 
Goodness of fit of models was checked by 
obstructing plots of germination percentage versus 
the normalized thermal time (Khorsand Rosa, 
Oberbauer, et al. 2015).

40% 

 10% 

60%

20% 
30% 

80% 

To estimate the GR (g), germination time courses of 
each temperature, water potential, and replicate 
were fitted separately using probit analysis 
procedure. The tg for subpopulation was estimated 
using linear function of GR on temperature for  (50) 

each water potential. The linear function of GR on (50) 

water potential was used to estimate t  at each g

germination temperature. Similarly, the linear 
functions of specific g fraction on ψ for 
subpopulation:

70%  

50% 

were used for Ө  estimation. Data from all replicates H

and the regressions were disregarded when they 
were not significant (P> 0.05).

1.2.3. Comparison of hydrothermal time models 
based on different assumptions

H = (    -    b(g) )tg………………....………..1.2

The basic hydrothermal time model was based on 
(Atashi, Bakhshandeh, et al. 2015)hydrotime 
constant, �H, is calculated as:

where     is the actual water potential, and    b(g) is 
the minimal water potential or base water potential 

1.3 Results

decreases than at 30 and35˚C. It can also be observed 

Cumulative maize seed germination was significantly 
affected by temperature. Cultivar, temperature and 
water potential had significant impact on cumulative 
maize seed germination (fig. 1.1a & 1b). PAN413 had 
the highest cumulative germination percentage at all 
temperatures.   The final germination percentage of 
maize seed was significantly influenced by cultivar, 
temperature, water potential and cultivar x temperature 
(Table 1.1), cultivar x water potential (fig 1.2.) 
temperature x water potential (fig 1.3) and cultivar x 
temperature x water potential (Table 1.3) interactions.  
The significant effect of temperature and water potential 
interaction shows that there is interdependence between 
these two factors for the germination of maize seed (fig 
1.4). Observations from fig 1.4, show that a rise in 
temperature and a fall in water potential significantly 
lowered final germination percentage of maize seed. 
The negative impact of water potential is particularly 
witnessed at 30˚C and 35˚C where significant reduction 
in final germination percentage occurred with each 
incremental fall in water potential from -0.4MPa to -
0.6MPa. At 25˚C there is little significant reduction in 
the final germination percentage as water potential 

1.3.1 Final germination percentage

Ѱ Ѱ
Ѱ Ѱ

Ѱ Ѱ Ѱ 
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that the final germination percentage at each water 
potential falls as the temperature rises, with the lowest 
final germination percentage recorded at the highest 
temperature. These results show that maize seed usually 
germinates best at a temperature between 25 and 30˚C 
and a water potential of 0 to -0.2MPa, although the 
neutral (0) water potential is affected by temperature.
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Table 1.1. Effect of water potential on final germination percentage  
Water potential (MPa)                        N                                           Mean FGP

 
-0.05                                                    90                                           52.995a

 -0.1                                             

         

90                                           50.550b

 
-0.2                                                      90                                           42.922c

 
-0.4                                                      90                       

                    

37.411d

 

-0.6                                                     90                                            25.612e   

 

 

Cultivar           Temperature              N                 Mean FGP             StdDev

PAN413                       15                  30                    43.17                   18.29

                                     

20                  30                    67.67                     19.07

                                     

25                  30                    79.58                     14.43

                                     

30                

  

30                    61.00                     10.84

                                     

35                  30                   26.58                      14.47

PAN4A-111                 15                  30                   24.33                 

     

13.28

                                      

20                 30                   56.67                      14.86

                                      

25                 30                   62.24                      13.80

                                      

30                 30                   29.31                       15.50

                                      

35                 30                     4.00                         3.19

PAN6479                      15                 30   

                

27.32                       16.45

                                      

20                 30                   58.15                       11.91

                                      
25                 30                   47.90           

            
13.78

                                      

30                 30                   34.15                       11.12

                                       

35                30                     8.42                         7.33

Table 1.2. Interactional effect of cultivar and 
temperature on final germination percentage

From fig.1.2 PAN413 had the highest mean germination 
percentage at all the water potentials. At -0.05MPa 
PAN413 had MFGP of 67.83% and at -0.6MPa it had 
MFGP of 37.75%. PAN4A-111 was second in terms of 
response to interaction of cultivar and water potential. 
PAN 6479 had the least MFGP of 20.83% at -0.05MPa 
and 15.16% at -0.6MPa.
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Fig 1.2 Interactional effect of cultivar and water 
potential on final germination percentage

Fig. 1.1b. Cumulative germination for the three 
cultivars at 30-          over 10 day period

o35 C

*Number with the same letters are not significantly different.
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Interaction effect of temperature and water potential 
had significant effect on final germination percentage of 

o
the three maize cultivars. Temperature of 25 C and -
0.05MPa had the highest final germination percentage 

ofig. 3.2. followed by 20 C and -0.05MPa. As both 
temperature and water potential increased, final 
germination percentage significantly went down. 
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Fig.1.4 Interactional effect of cultivar “temperature”
water potential on FGP of PAN4A-111
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The optimum temperature (T ) for PAN 413 and PAN o
0 04A-111 was 25 C, but for PAN 6479 it was 20 C.The 

models at higher water potentials performed much 
better as they explained more than 80% of the 
variation. The germination curves under normalized 

0thermal time (i.e. a time scale with the number of C 
above the base temperature for germination 
multiplied by the time to reach a given germination 
percentage) for the below and above optimum 
temperature showed that the models accounted for 
the observed germination patterns, as indicated by 
the overlap of the data points. The thermal time to 
reach  50% of  the  germinat ion  increased 
exponentially as water potential decreased with the 

0shortest equal to 2.48days at 25 C and -0.05MPa for 
0PAN 413, 1.73 days at 25 C and -0.05Mpa and 

02.53days at 20 C and -0.05Mpa. Above T , the 0

observed   ceiling temperature for the three 
0PANNAR cultivars was 35 C with water availability 

equal to ψ=-0.6Mpa.

The germination model shows the linear relationship 
of final seed germination to temperature and water 

opotential. At low temperature of 15 C, there was low 
final germination percentage by all the three maize 
cultivars supporting the fact that each crop has its 
optimum germination temperature and base 
temperature. For maize the base temperature (T ) is b

o o10 C and in this study 15 C was the lowest 
temperature nearer to base temperature. Base water 
potential for maize is -0.5MPa and in the study the 
lowest water potential was -0.6MPa. Looking at 

water potential alone optimum final germination 
percentage was observed around 0MPa and -
0.2MPa for all the three cultivars. The germination 
model indicated that as temperature increased from 

o15 -25 C and water potential was -0.2 to -0.05MPa, 
fina l  ge rmina t ion  pe rcen t age  i nc reased 

osignificantly. From 30-35 C and water potentials of -
0.4 to -0.6MPa final germination percentages went 
down

1.3.3. Germination modelling
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Fig.1.5a. Germination % of 10-90% of final 
o

germination percentage for the three cultivars at 15-25 C  

From fig.1.5a above, the 10-90% of final germination 
percentage that of PAN413 at all temperatures was above 
the other two cultivars i.e. PAN4A-111 and PAN6479. 
These percentages are critical as they are used to 
compare how best a variety performs in relation to the 
other cultivars. The equations or models show the linear 
relationship of temperature, time and germination 

opercentage. For example at 25 C the model for PAN413 
and PAN4A-111 were as follows:
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PAN413:Y=7.945x- 0.0139………….......……..3.1
2R  =1…......…………………………………......3.2

2R  =1…………………................................……3.5

PAN4A-111: Y= 6.2433x- 0.0167…………........3.4

 

y = 5.9683x + 0.0472
R² = 1

y = 3.0633x - 0.0167
R² = 0.9999
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Fig.1.5b. Germination % of 10-90% of final germination 
percentage for the three cultivars at 30-35%

2R  =1……………................…………………..3.7

2R  =0.999…………...........…............…………3.9

PAN413: Y= 5.9683x +0.0472….............…......3.6

oAs temperature rose 30-35 C, the 10-90% of final 

germination percentage dropped. The following 

models  indicate the fal l  in germination 

percentages.

PAN4A-111: Y =3.0633x -0.0167……....……..3.8

Table 1.3. 10-90% of final germination and time taken by the three cultivars over the five different temperature  

Temp Cultivar  10% 20% 30% 40% 50% 60%  70%  80%  90%  

15oC

 
PAN413

 
Time(days)

 
4.4

 

5.25

 

5.5

 

6.1

 

6.5

 

7.15

 

8

 

8.4

 

9.25

 

  

GN%

 

5.3

 

10.5

 

15.8

 

21.07

 

26.34

 

31.6

 

36.9

 

42.14

 

47.4

 

 

PAN4A-

111

 

Time(days)

 

3

 

3.5

 

3.8

 

4.3

 

5

 

5.5

 

6

 

6.5

 

7.48

 

  

GN%

 

2.4

 

4.8

 

7.3

 

9.8

 

12.2

 

14.6

 

17.1

 

19.5

 

21.9

 

 

PAN6479

 

Time (days)

 

3

 

3.52

 

4.2

 

4.4

 

4.8

 

5.4

 

6.3

 

7

 

7.6

 

  

GN%

 

2.9

 

5.8

 

8.7

 

11.6

 

14.4

 

17.3

 

20.2

 

23.1

 

26

 

20oC

 

PAN413

 

Time(days)

 

1.2

 

1.6

 

2.2

 

2.7

 

3.3

 

3.6

 

4.1

 

4.7

 

6.3

 

  

GN%

 

6.7

 

13.5

 

20.2

 

26.9

 

33.7

 

40.4

 

47.1

 

53.9

 

60.6

 

 

PAN4A-

111

 

Time(days)

 

1.1

 

1.4

 

1.6

 

2

 

2.4

 

2.6

 

3.1

 

4.1

 

4.9

 

  

GN%

 

5.9

 

11.7

 

17.6

 

23.5

 

29.3

 

35.2

 

41

 

46.9

 

52.8

 

 

PAN6479

 

Time(days)

 

0.8

 

1.1

 

1.4

 

1.7

 

2.1

 

2.48

 

2.8

 

3.6

 

4.7

 

  

GN%

 

5.8

 

11.7

 

17.5

 

23.3

 

29.1

 

35

 

40.8

 

46.6

 

52.4

 

25oC

 

PAN413

 

Time(days)

 

0.7

 

0.9

 

1.1

 

1.4

 

1.8

 

2.3

 

2.9

 

3.6

 

4.7

 

  

GN%

 

7.9

 

15.9

 

23.8

 

31.8

 

39.7

 

47.7

 

55.6

 

63.5

 

71.5

 

 

PAN4A-

111

 

Time(days)

 

0.7

 

0.7

 

0.8

 

0.9

 

1.2

 

1.5

 

1.7

 

2.4

 

3.7

 

GN% 6.2 12.5 18.7 25 31.2 37.4 43.7 49.9 56.2

PAN6479 Time(days) 0.7 0.8 0.9 0.9 0.9 0.9 1.4 1.8 3

GN% 4.8 9.6 14.4 19.2 24 28.7 33.5 38.3 43.1

30oC PAN413 Time(days) 0.8 1.1 1.4 1.6 1.8 2.1 2.5 2.8 3.7

GN% 6 12 18 23.9 29.9 35.8 41.8 47.8 53.8

International Journal of Scientific & Engineering Research Volume 11, Issue 2, February-2020 
ISSN 2229-5518  

684

IJSER © 2020 
http://www.ijser.org 

IJSER



 PAN4A-

111 

Time(days) 

0.7 0.9 1.2 1.4 1.6 1.8 2.1 2.7 3.2 

  GN% 3.1 6.1 9.2 12.2 15.3 18.3 21.4 24.4 27.7 

 PAN6479 Time(days) 0.7 0.8 0.9 1 1.4 1.6 1.7 2.3 2.7 

  GN% 3.4 6.8 10.2 13.7 17.1 20.5 23.9 27.3 30.7 

35oC PAN413 Time(days) 0.7 0.8 1.1 1.4 1.6 1.8 2.2 2.6 3 

  GN% 2.7 5.3 8 10.6 13.3 16 18.6 21.2 23.9 

 PAN4A-

111 

Time(days) 

0.7 0.7 0.8 0.9 1.7 2 2.7 3 3.3 

  GN% 0.4 0.8 1.2 1.2 1.6 2.4 2.8 3.2 3.6 

 PAN6479 Time(days) 0 0 0 1 1.1 1.2 1.7 1.8 2.3 

  GN% 0.8 1.7 2.5 3.4 4.2 5.0 5.9 6.7 7.6 

 

Time taken to reach certain percentages of the final 
germination percentages decreased as temperature 

oincreased e.g. at 15 C PAN413 4.4days to have 10% of 
ofinal germination percentage but at 35 C it only 

needed 0.7days to get to the same 10% of final 
germination percentage. To reach 50% of final 
germination percentage,  PAN413 required 
1.8days,PAN4A-111 required 1.2days and PAN6479 

oneeded 0.9days at 25 C.

T is time taken by a cultivar of maize to reach 50% of 50 

the final germination percentage under the different 
hydrothermal conditions in this case under set 
temperature and water potentials. From table 3.2 
PAN413 required more time to reach 50% of the final 
germination at all different five temperatures and five 
water potentials. PAN6479 had the lowest time to 
reach 50% of final germination percentage. There was 
no linear relationship between T and final 5 0  

germination percentage. The cultivar with the longest 
period to reach T  finally had the highest germination 50

percentage but the one with lowest T , ended with the 50 

lowest final germination percentage. Water potential 
had significant effect on mean T  at -0.05MPa and -50

0.6MPa. The observed trend was that T decreased 50 

with a decrease in water potential. Under low water 
potential, maize seed took less time to get to 50% of 
the final germination percentage.

1.3.4. Time to 50% of final germination percentage
Germination rate index was significantly influenced 

oby cultivar and temperature interaction. At 15 C all 
the three cultivars had very low germination rate 
index (Fig. 3.6b). As temperature increased from 

o o15 C to 25 C, the GRI also increased at an increasing 
rate (Fig. 3.6b). For PAN413 it continued increasing 

oat a decreasing rate until it got to 30 C where the 
highest GRI was recorded. Highest value of GRI 

owas observed under 25 C for all the three cultivars. 
The cultivar with the highest GRI indicated that it 
had the highest GRI energy and is therefore a better 
cultivar under varying temperature and water 
potential. The result showed that highest 
germination index was observed in PAN413 and 
germination index was considerably reduced under 
high temperature and low water potential condition 
(Fig. 1.6a and Fig. 1.6b). Under high temperature 
and low water potential maize plants showed 
highest percentage 43.34% and 30.68 germination 
index. Highest germination index was observed at 
four days as compared to seven and ten days after 
sowing. 

 
50  

Water potential (MPa)                                   N                                                      Mean T50

-0.05                                                    90                                             2.8444a

-0.1                                                            90                                                     2.7629ab                                                                    

-0.2                                              

              

90                                                     2.6406ab                                                            

-0.4                                                            90                                                     2.5945ab                                                            

-0.6                                                            90                                                     2.5156b

*Numbers with the same letters are not significantly different

Table 1.4 Effect of water potential on T 

1.3.5 Germination rate index
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Fig. 1.6b Effect of temperature on GRI
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The study was able to establish that temperature and 
water potential played an important role in maize seed 
germination as seen in the decrease in the final 
percentage germination rate with increases in the 
temperature regimes and decrease in water potential. 
(Essemine, Ammar, et al. 2010) reported that inhibition 
of seed germination with increase in temperature often 
occurs through induction of ascorbic acid (ABA). 
Seeds exposed to very high temperatures and low 
water potential  in this study must have produced more 
ABA thus inhibiting germination  (Piskurewicz and 

oLopez-Molina 2016). At very high heat stress (35 C) 
and low water potential of -0.6MPa, the rate of maize  
seed germination was strictly prohibited and caused 
cell death and embryos for which seedling 
establishment rate was also reduced  (Kumar 2014).In 
this study, it can be concluded that low water potential 
induced water stress adversely affected the 
germination of maize varieties. Distinct genetic 
differences were found among the varieties with 
respect to final germination percentage, time to reach 
50% of final germination percentage and germination 
rate index when exposed to high temperatures and low 
water potential. Low water potential is physiologically 
related.  PAN413 in high temperatures and low water 
potential condition was more tolerant compared to 
PAN4A-111and PAN6479. Low water potential 

significantly reduced final germination percentage, 
T and  germination index (Lewandrowski, 5 0  

Erickson, et al. 2016). Under high temperature and 
low water potential, germination was reduced as a 
result of shortage of water required for early 
processes of germination. Low water potential had a 
lethal effect on germinating seeds. High range of 
temperature resulted in reduction in seed germination 
rate because high temperature affects enzyme 
functions and initiates moisture stress. In the study, 
negative effects of low water potential were found on 
final germination percentage, T and germination rate 50 

index. Reason behind this effect may be the 
disturbance in the physiology due to increase in 
osmotic stress (Dubey, Srivastava, et al. 2014). 
Previous studies suggested that low water potential 
can contribute to improved germination rate and 
seedling emergence in different plant species by 
strengthening presence of aquaporins (Galhaut, de 
Lespinay, et al. 2014), by increase of amylases and 
proteases or lipases activity (Galhaut, de Lespinay, et 
al. 2014). Soil moisture deficiency due to drought is 
most likely the significant abiotic factor limiting seed 
germination and seedling 

Growth (Avramova, Nagel, et al. 2016). Results of the 
study reveal that PAN413 had tolerance to water 
stress conditions as compared to PAN4A-111 and 
PAN6479. Maize seeds required 7-10 days to 
germinate. The long range was as a result of varying 
temperatures and water potential levels used in the 
study. Duration to germination varied as much as 3-
4folds within the range of temperature conditions 
used. In general, the duration of germination was the 

0shortest at temperatures between 25 and 30 C and was 
higher at temperatures outside the range. Duration of 
germination increased with the decreasing 
temperature and water potential. Seeds did not 

0germinate under treatment conditions of 35 C and -
0.6MPa water potential treatment. Predicted 
cumulative germination percentages over time at 
various water potential levels (ᴪ) and temperature 
regimes generally matched well with observations. 
Estimated values of ᴪ  (50), and θ  were specific for b H

each temperature regime.

1.4 Discussion
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